Short Report

A kit for in vitro isolation of trypanosomes in the field: first trial with sleeping sickness patients in the Congo Republic

D. Aerts, P. Truc, L. Penchenier, Y. Claes, and D. Le Ray

Low parasitaemias in patients infected with Trypanosoma brucei gambiense, with its limited infectivity to rodents, result in poor diagnosis and isolation (Dukes et al., 1991). Procyclic forms grow readily in culture medium (e.g., Brutsaert & Henrard, 1936; Cunning-Ham, 1977), but the transformation of low numbers of bloodstream forms from rodent blood to the procyclic phase is difficult (Bienen et al., 1980; Truc, 1991). Dukes et al. (1989) achieved such transformation using the natural cycle in the vector by feeding infected blood to susceptible laboratory-reared tsetse flies. However, in the field the usual approaches require either inoculation of rodents, which is unreliable, or deep-freezing of patients’ blood.

To solve these problems, we have developed a kit for in vitro isolation of trypanosomes (KIVI). It allowed direct introduction of patients’ blood into culture medium, with the subsequent transformation to, and multiplication of, procyclic trypanosomes. The medium (GLSH-DCA) comprised glucose, lactalbumin, serum and haemoglobin (Le Ray, 1975) diluted with an equal volume of Hank’s solution (Hanks & Wallace, 1949; Le Ray et al., 1970) and complemented with 3 mM citrate (final concentration) according to Bruin & Schonenberger (1981). Ten ml of blood were drawn into either a syringe containing 0.5 ml of 5% Liqui’d (sodium polyanetholesulphonate) anticomplementary anticoagulant (Le Ray et al., 1970), or a Monovette® (Sarstedt) syringe containing heparin (lithium salt). The blood mixture was then dispensed equally into 2 vials (R1), each containing 10 ml of GLSH-DCA; one also contained a supplement of antibiotics (penicillin, 5000 i.u/ml; gentamycin, 200 µg/ml; 5-fluorocytosine, 50 µg/ml). The vials were mixed by gentle manual agitation and kept at room temperature. In the initial laboratory tests, a minimum concentration of 2.5×10⁶ trypanosomes per ml could be transformed and cultured.

Results from 10 patients sampled on 2 separate occasions (1989, 1990) in the Bouenza focus, Republic of the Congo.

Table. Trypanosome isolation by KIVI and by rat inoculation from ten sleeping sickness patients in the Congo Republic

<table>
<thead>
<tr>
<th>Patient</th>
<th>CATT</th>
<th>LN</th>
<th>MHC</th>
<th>Rat</th>
<th>Anticoagulant</th>
<th>KIVI R1</th>
<th>R2</th>
<th>Stock no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minja</td>
<td>+</td>
<td>NS</td>
<td>+</td>
<td>+41</td>
<td>Li</td>
<td>27–36</td>
<td>20–4</td>
<td>ITMAP 2202</td>
</tr>
<tr>
<td>Balpa</td>
<td>+</td>
<td>NS</td>
<td>+</td>
<td>NEG</td>
<td>He+Li</td>
<td>24–36</td>
<td>20–4</td>
<td>ITMAP 2203</td>
</tr>
<tr>
<td>Silou</td>
<td>+</td>
<td>T+</td>
<td>++</td>
<td>+38</td>
<td>He+Li</td>
<td>31–36</td>
<td>20–16</td>
<td>ITMAP 2204</td>
</tr>
<tr>
<td>Bissi</td>
<td>+</td>
<td>NS</td>
<td>+</td>
<td>NEG</td>
<td>Li</td>
<td>27–36</td>
<td>20–4</td>
<td>ITMAP 2205</td>
</tr>
<tr>
<td>Pave</td>
<td>+</td>
<td>NS</td>
<td>+</td>
<td>NEG</td>
<td>Li</td>
<td>NEG 20–NEG</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>April 1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicar</td>
<td>+</td>
<td>T+</td>
<td>++</td>
<td>+26</td>
<td>Li</td>
<td>18–25</td>
<td>15–5</td>
<td>ITMAP 2208</td>
</tr>
<tr>
<td>Koa</td>
<td>NEG</td>
<td>T+</td>
<td>++</td>
<td>+26</td>
<td>He</td>
<td>NEG ND</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bousa</td>
<td>+</td>
<td>T+</td>
<td>++</td>
<td>NEG</td>
<td>Li</td>
<td>15–54</td>
<td>15–3</td>
<td>ITMAP 2210</td>
</tr>
<tr>
<td>Houm</td>
<td>+</td>
<td>NEG</td>
<td>+++</td>
<td>ND</td>
<td>Li</td>
<td>NEG ND</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Babi</td>
<td>+</td>
<td>T+</td>
<td>++</td>
<td>NEG</td>
<td>He</td>
<td>NEG ND</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*Card agglutination test for trypanosomes (Magnus et al., 1978).
*Lymph nodes: NS, not swollen; T+, trypanosomes seen in lymph fluid.
*Microhaematocrit centrifugation (Woo, 1970): ++, 1-5; ++, 6-15; ++++, >15 trypanosomes.
*Rat inoculation: time (days) to positive by thin blood film examination; NEG: negative by wet smear over 2 months; ND, not done.
*Li: Liqui’d (see text); He: heparin
*R1: first day of patency in initial culture following inoculation. NEG: negative.
*R2: age in days of R1 when subinoculation into R2 was performed; arrow indicates day R2 became positive. NEG: negative.
Congo, are presented in the Table; at the same time, 1 ml of blood from each patient was inoculated into a rat. The inoculated KIVIS were sent or brought back to Europe, where 2 to 4 weeks after the initial inoculation, they were examined. Subinoculation (R2) was performed into blood-agar (TOBIE, 1949) and Cunningham's medium (CUNNINGHAM, 1977). R1 and R2 vials were kept under observation for one month.

Of the 10 sleeping sickness patients with low-grade parasitaemias, 7 provided a positive culture in KIVI whereas only 3 were infective to rats. Isoenzyme characterization for 24 loci (TRUC, 1991) showed that all the isolates belonged to classical T. b. gambiense. Our results also confirm the low infectivity of T. b. gambiense in Central Africa to rodents.

In this preliminary study, KIVI was more effective than rat inoculation in isolating human parasites. Liquoïde (Roche) was confirmed to be the best anticoagulant (WEINMAN, 1960). The operational value of KIVI in field work was demonstrated by the long period during which it sustained the growth and viability of procyclic trypanosomes (25-54 d; average 40 d). Work is now in progress to improve the KIVI and test it in other areas of Africa, and to evaluate its diagnostic value for hosts with subpatent infections.

Acknowledgements
This investigation received financial support from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (87005) and from the Commission of the European Communities (TS2-0022-B).

References


Received 11 February 1992; accepted for publication 20 February 1992